181 research outputs found

    Life After Eruption: Best of 2009–2013

    Get PDF
    From our ongoing survey to study the post-nova population we present details on the four objects V728 Sco, AR Cir, V972 Oph and X Cir

    When a Nova Becomes Old

    Get PDF
    Here we present the preliminary results of a project aimed at unveiling the nature of classical novae decades after their eruption. The ultimate goal of this project is to describe the population of cataclysmic variables which give rise to nova explosions. So far, in four years of observations, we have concentrated on novae in the Southern hemisphere, where we increased by 100% the amount of objects spectroscopically confirmed and increased by 1/5 the amount of objects with known orbital period

    On the 2011 Outburst of the Recurrent Nova T Pyxidis

    Get PDF
    We discuss the nebular phase emission during the 2011 outburst of the recurrent nova T Pyxidis and present preliminaryresults on the analysis of the line profiles. We also present some discussions about the binary system configurations and the X-ray emission, showing that the white dwarf mass should be larger than 0.8 MΘ

    Extracting Hα\alpha flux from photometric data in the J-PLUS survey

    Full text link
    We present the main steps that will be taken to extract Hα\alpha emission flux from Javalambre Photometric Local Universe Survey (J-PLUS) photometric data. For galaxies with z0.015z\lesssim0.015, the Hα\alpha+[NII] emission is covered by the J-PLUS narrow-band filter F660F660. We explore three different methods to extract the Hα\alpha + [NII] flux from J-PLUS photometric data: a combination of a broad-band and a narrow-band filter (rr' and F660F660), two broad-band and a narrow-band one (rr', ii' and F660F660), and a SED-fitting based method using 8 photometric points. To test these methodologies, we simulated J-PLUS data from a sample of 7511 SDSS spectra with measured Hα\alpha flux. Based on the same sample, we derive two empirical relations to correct the derived Hα\alpha+[NII] flux from dust extinction and [NII] contamination. We find that the only unbiased method is the SED fitting based one. The combination of two filters underestimates the measurements of the Hα\alpha + [NII] flux by a 28%, while the three filters method by a 9%. We study the error budget of the SED-fitting based method and find that, in addition to the photometric error, our measurements have a systematic uncertainty of a 4.3%. Several sources contribute to this uncertainty: differences between our measurement procedure and the one used to derive the spectroscopic values, the use of simple stellar populations as templates, and the intrinsic errors of the spectra, which were not taken into account. Apart from that, the empirical corrections for dust extinction and [NII] contamination add an extra uncertainty of 14%. Given the J-PLUS photometric system, the best methodology to extract Hα\alpha + [NII] flux is the SED-fitting based one. Using this method, we are able to recover reliable Hα\alpha fluxes for thousands of nearby galaxies in a robust and homogeneous way.Comment: 11 pages, 14 figures. Minor changes to match the published versio
    corecore